Finite element methods of an operator splitting applied to population balance equations
نویسندگان
چکیده
In population balance equations, the distribution of the entities depends not only on space and time but also on their own properties referred to as internal coordinates. The operator splitting method is used to transform the whole time-dependent problem into two unsteady subproblems of a smaller complexity. The first subproblem is a timedependent convection-diffusion problem while the second one is a transient transport problem with pure advection. We use the backward Euler method to discretize the subproblems in time. Since the first problem is convection-dominated, the local projection method is applied as stabilization in space. The transport problem in the one-dimensional internal coordinate is solved by a discontinuous Galerkin method. The unconditional stability of the method will be presented. Optimal error estimates are given. Numerical results confirm the theoretical predictions.
منابع مشابه
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Keywords: Operator-splitting method Finite element method Parabolic equations High-dimensional problems a b s t r a c t An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algori...
متن کاملDynamic Simulation and Control of a Continuous Bioreactor Based on Cell Population Balance Model
Saccharomyces cerevisiae (baker’s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance equation (PBE) can be used to capture the dynamic behavior of such cultures. In this work, an unstructured-segregated model is used f...
متن کاملAn overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most compu...
متن کاملAdaptive Finite Element Methods for Multiphysics Problems Adaptive Finite Element Methods for Multiphysics Problems
In this thesis we develop and evaluate the performance of adaptive finite element methods for multiphysics problems. In particular, we propose a methodology for deriving computable error estimates when solving unidirectionally coupled multiphysics problems using segregated finite element solvers. The error estimates are of a posteriori type and are derived using the standard framework of dual w...
متن کاملNumerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions
In this article, we discuss the numerical solution of the Stokes and Navier-Stokes equations completed by nonlinear slip boundary conditions of friction type in two and three dimensions. To solve the Stokes system, we first reduce the related variational inequality into a saddle point-point problem for a well chosen augmented Lagrangian. To solve this saddle point problem we suggest an alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2011